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INTRODUCTION

NaTURrAL convection flow analysis in enclosures has many
thermal engineering applications, such as cooling of elec-
tronic devices, energy storage systems and fire-safe com-
partments. In the design of such devices, the transient
behavior of flows is of vital interest in order to assess the
maximum heat transfer rate, to cite an example. The transient
flow properties may differ significantly from the steady-state
values. In the present paper, a numerical study is conducted
on three-dimensional transient natural convection in an air-
filled cubical enclosure, which is heated differentially at its
vertical side walls. As shown in Fig. 1, the entire system is
initially at rest and at a uniform temperature of 7. Suddenly,
the right vertical wall of the enclosure is heated isothermally
at a temperature of Ty, while the left side is cooled at a
temperature of 7. The remaining four walls are thermally
insulated. The overall temperature difference, T,y — T, is
set equal to one-tenth of the film temperature, (7 + Ty)/2,
which is used as the reference temperature, 7,, of the
problem. The geometry and the initial and boundary
conditions are mathematically well posed; they provide
adequate models for relevant thermal engineering systems.
To the present authors’ knowledge, comprehensive and
thorough time-dependent three-dimensional investigations
are not available in the literature. Steady-state two-dimen-
sional numerical analyses have been carried out over an
extensive range of Rayleigh numbers of 10° < Ra < 10'®
(e.g. ref. [1]). For 10° < Ra < 10° and a Boussinesq fluid of
Pr=0.71, a set of benchmark solutions for steady two-
dimensional flows has been suggested [2]. Research efforts
have been relatively scarce for transient two-dimensional
problems [3-5]. The impact of internal gravity oscillations
on the global heat transfer characteristics has been of con-
siderable concern in such two-dimensional situations [4, 5].
In order to better simulate practical situations, three-
dimensional flow calculations are highly desirable. However,
solution of the three-dimensional flow equations requires far
larger computational resources than that for two-dimen-
sional calculations. Steady-state three-dimensional laminar
flow has been studied for enclosures of the length aspect ratio
(enclosure depth/width), 4., varying from 2 to 4 [6, 7]. Gross
features observed in the enclosures reveal highly three-
dimensional structures of the flow. The enclosures with
A: =1 and 2 have been considered in Lankhorst and Hoog-
endoorn [8], who computed steady flows for three Rayleigh
numbers: Ra = 10°, 4 x 10® and 10'°. In the last two cases,
the k—¢ turbulence model was employed. However, these
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F1G. 1. The flow configuration.

previous steady-state calculations were executed by using
relatively coarse finite difference meshes.

In the present work, transient three-dimensional com-
putations are carried out for a Rayleigh number of 10°
and for Pr=0.71. This is representative of high-Rayleigh
number enclosure flows. An extremely fine grid network (62°
grid points), which has been used in a recent investigation
by the present authors [9], is employed. This enables us to
attain sufficient resolution of the local field characteristics.
The numerical resolution of the present transient com-
putations is comparable to the maximum accuracies that
have been achieved in the previous steady-state two-dimen-
sional situations [2]. The entire enclosure constitutes the
computational field. The finite difference mesh is non-uni-
formly distributed to handle steep gradients of the field vari-
ables near the solid surfaces.

The flow is governed by the three-dimensional, time-
dependent, incompressible Navier-Stokes and energy equa-
tions. They are solved by a control-volume based finite
difference procedure. The complete mathematical for-
mulation and a detailed description of the numerical method
can be found elsewhere [9], and they are not repeated here.
It suffices to mention that the convective terms are discretized
by the QUICK methodology modified for non-uniform grids
[10] and that the iterative solution algorithm is based on the
well-known SIMPLE type [11] and the Strongly Implicit
Scheme [12].

The present research is a direct extension of the previous
three-dimensional, steady-state analysis mentioned above.
The primary objective of this study is to present complete
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l'echnical Notes

k thermal conductivity [Wm™ ' K ']
L, reference length (enclosure height) [m]
N Brunt Viisild frequency,
(T - T L] s ')
Nt oan Overall Nusselt number
Pr Prandtl number, ¢, ik
Ra  Rayleigh number. gfc, p* L(Ty— Te) i pik

! non-dimensional time, r*N

T non-dimensional temperature, 7%/ 7T,

T, reference temperature, (74 7,)/2
(ms ']

NOMENCLATURE i

A aspect ratio {enclosure heightswidth) T, Ty cooled and heated side wall |
¢ specific heat at constant pressure temperatures [K| :
[Tkg "K' u,  reference convective velocity. :

g gravitational acceleration [ms | [gBLATy—~TH]' " Ims '] ;

non-dimensional Cartesian
coordinates. (v, 1*. %) L.

RN =

Greek symbols

f thermal expansion coefticient [K ']

u viscosity [kgm 's ']

P density [kg m7]

) non-dimensional vorticity, w* /[, u,.

Superseript |

* dimensional quantitics. ?
t
E

three-dimensional pictures of the gross features ol time-
cvolving convective patterns in a cubical enclosure. At a high
Rayleigh number, it is anticipated that the distinet boundary
layers are present near the walls; in the bulk of the interior,
a near-stagnant core will be a salient feature. The present
paper clearly captures these prominent transient threc-
dimensional characteristics by use of the state-of-the-art
computer simulation techniques. The field characteristics of
the transient natural convection inside the enclosure are
examined by elaborate three-dimensional numerical visu-
alizations of the results, as have been done in the steady-
state calculations [9]. Time-dependent changes in the flow
characteristics and heat transfer rate in the enclosure are
scrutinized, and the decay of the internal gravity waves in
the enclosures is discernible.

The three-dimensional numerical results of the present
study provide useful and systematic data for this fun-
damental low model ; examination of the data permits closer
analyses of transient three-dimensional features. In particu-
lar, the quantitative information of the internal gravity oscil-
lations will be available in the present numerical solutions.

It is stressed that the present numerical methods arc
designed to describe the true time-dependent process of the
physical phenomena. This is in contrast to the false-time
transient techniques [2], which are used to accelerate the
convergence of solutions at the steady state.

RESULTS AND DISCUSSION

Time evolutions of the temperature and flow fields at
Ra = 10° arc examined by using three-dimensional per-
spective views of the isotherms and the absolute values of
the vorticity. The vorticity. w. derivable from the velocity
field, is a direct indicator ol the gradients of the flow.

Initially, the fluid is at a uniform temperature of T, and
motionless. A sudden differential heating at ¢ > 0 at the two
vertical side walls (x = 0 and 1) creates sharp temperature
gradients in the proximity of the isothermal walls. In the
central region of the cnclosure. the fluid is still at the initial
uniform temperature; thus, the heated fluid near the side
wall at x = [ starts to risc. and the cooled fluid near v = 0
moves downward. Subsequent to this initial development,
the heated and cooled fluids flow along the ceiling and floor
of the enclosure. respectively. in opposite directions. After
some time, these flows meet each other near the corners of
the horizontal walls. The flow ficld at this stage is sketched
in Fig. 2(a). which depicts the temperature and flow fields at
t = 7.5. Near the end walls (z =0 and 1), the isotherms
adjacent to the horizontal walls (y = 0 and 1) develop -
variations. This is due to the no-slip conditions imposed on
the end walls. Consequently, vorticity is generated in these
wall regions.

Adlter the fluid tayers merge. piling-up of the fuids m the
corner arcas between the side walls and horizontal walls
takes place as expounded by Patterson and Imberger {4] for
two-dimensional situations. This increases the overall tem-
peraturc gradients in the regions in the vicinity of the iso-
thermal walls. In the interior regions. the thermal ficld begins
to stratify. as demonstrated in Fig. 2(b). The vorticity field
illustrates that the intense flow motion is now mostly con-
fined into the thin layers in the proximity of the vertical
isothermal walls, in conjunction with the formation of the
stratified structure in the interior.

As time progresses, the thermal stratification s sub-
stantially accomplished, with the resulting near-stagnant
mterior core. As the steady state is approached (see Fig.
2(c)). the global field is well characterized by a combined
structure of the boundary layers near the walls and the near-
stagnant interior core.

The time evolutions of the fields portrayed above are quali-
tatively consistent with those described in Kiiblbeck e¢r «f.
|3]. who considered a two-dimensional square enclosure at
lower Ra: Pr values of around 10*,

In an effort to portray in further detail the time-dependent
flow process, Fig. 3 plots the exemplary behavior of the
local Nusselt number. Nyy,.,. at the heated wall (x = 1). Its
definition is given as

Nugpo = — ULy D)0 ()

1t 1s noted that the behavior of Nu,., 1s quite insensitive o
the = locations in the bulk of the enclosure. At small times
(c.g.at7 = 7.5). the y-variations of the local Nusselt number
are rather mild. At later times. large changes of N, arc
noticed in the regions close to the bottom wall (1 = 0). When
the steady statc is reached. the peaks of the local Nussclt
number are scen slightly away from the bottom plane. It 1s
cvident that the differcnces in the Nusselt number profiles at
= =10.2 and 0.5 arc very minor: this points to the prior
assertion that the two-dimensionality of the heat transler
characteristics is largely applicable in these central portions
of the enclosure.

Next. the time evolution of the heat transfer rate is scru-
tinized by using the overall Nusselt number. Nu,,,, . which
is calculated as

(|l cr
L (v =aor )
o X

+ (R Pryu(T(x = w.v.7) - l)] dydz (2)

il

Nttooran = ‘
y

where the terms in brackets represent the local Nusselt
number. Figure 4 illustrates the time histories of Nu, . al
the enclosure mid-plane (x = 0.5) and at the hecated wall
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% 7 (©) Steady State (¢t > 35)

ISOTHERMS ISOVORTICITIES
F1G. 2. Evolutions of the temperature and the absolute vorticity fields (contour levels: (for isotherms)
0.9667 (purple), 0.9833 (blue), 1.0 (green), 1.017 (yellow), 1.033 (red); (for isovorticity surfaces) 3.6
(purple), 7.2 (blue), 10.8 (green), 14.4 (yellow), 18.0 (red)).
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Local Nusselt Number
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FiG. 3. Time-dependent variations of the local Nusselt
number at the heated wall (x =1) (------ L t=15; ————~ ,
t = 14.5; ——, steady state).

(x = 1). The Nusselt number at x = 1 takes very large values
initially due to the sudden heating, and decreases rapidly to
reach a local minimum. It increases gradually afterward,
in a generally monotonic manner, until the steady state is
approached. The behavior of the Nusselt number in the
interior core, as typified in the curve for x = 0.5 in Fig. 4,
is strikingly different from that at the solid side wall. The
temperature in the interior core does not respond immedi-
ately to the changes in the boundary walls. As was succinctly
espoused in two-dimensional simulations [13-15], the tem-
perature at an interior location remains unchanged, main-
taining the original uniform value, T,, until the arrival of
the temperature front [13-15]. The temperature front in the
interior propagates vertically during the transient phase,
separating the region of uniform temperature and the strati-
fied region. Figure 4 clearly illustrates the advent of this
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F1G. 4. Evolutions of the overall Nusselt number (the time
instants, i.e. (a), (b) and (c), correspond to those shown in

Fig. 2 ( , at the heated wall (x=1); ------ , in the mid-
plane (x = 0.5)).
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temperature front, see (f) in the figure. Accordingly, no
convective heat transfer is discernible in the curve for x = 0.5
during the early phase of the transient process, i.e. the time
segment from ¢ = 0 and (f).

Soon after the temperature front passes through the
interior location under consideration, the convective flow
processes become vigorous. These convective activities,
coupled with the steep temperature gradients, give rise to
highly enhanced heat transfer. Accordingly, the overall Nus-
selt number demonstrates rapid increases with time around
t = (a).

As time elapses further, the temperature field in the interior
tends toward the vertically-linear distribution, as can be
inferred from Fig. 2(c). In the large-time steady-state limit,
the interior of the entire enclosure supports an almost linear
vertical temperature profile; the Nusselt number averaged
over each plane of x = constant attains the same constant
value (8.77) in the whole of the enclosure interior.

Another significant feature of the temporal behavior of
the Nusselt number in the interior is the pronounced oscil-
lations superposed on the general approach to the steady
state. The basic mechanism for this oscillatory nature was
delineated [4]. By the way of physically insightful scaling
arguments, Patterson and Imberger [4] stressed that these
oscillations are reflective of the presence of internal gravity
waves. Stemming from elaborate scaling analyses for a two-
dimensional enclosure, Patterson and Imberger [4] and Pat-
terson [16] suggested a criterion for the existence of such
oscillations

Ra> PriA— 3)

The above criterion has been the subject of verification by
several two-dimensional studies (e.g. refs. [5, 16, 17]) that
covered broad ranges of the Rayleigh and Prandt! numbers.
The present calculations clearly point to the existence of such
oscillations in the three-dimensional situations. Further-
more, the period of oscillations is approximately 12.0, as
detected in Fig. 4. There are no published data for the oscil-
lation period for the three-dimensional flows in the parameter
ranges considered in this note ; however, the period of oscil-
lations for two-dimensional enclosure flows has been esti-
mated (4] as

T=2nr(l+4%)"" “

This two-dimensional analytical prediction for the aspect
ratio 4 = [ gives 7 = 8.89. These comparisons indicate that
the detected period of oscillations in Fig. 4 is at least of the
same order of magnitude as that of the two-dimensional
analytical estimate. The oscillations in Fig. 4 die out with
time after approximately three cycles ; this is due to the effects
of viscosity, as remarked by the prior authors [4, 5. 13].

SUMMARY

Transient three-dimensional natural convection in a
differentially heated cubical enclosure is studied numerically
at a representative high-Rayleigh number of 10°. By employ-
ing a fine grid network, high-resolution computed fields have
been secured. The present resolution is comparable to the
best of the previous steady-state two-dimensional analyses.
Time evolutions of the temperature and flow fields are illus-
trated by the development of the distinct boundary layers
along the isothermal walls and the near-stagnant interior
core. The behavior of the heat transfer rate in the enclosure
is seen to be considerably influenced by the presence of the
internal gravity wave motion. The period of the oscillations
appears to be of the same order of magnitude as the analytical
prediction of two-dimensional flows.

Note: the interested readers should contact the first author
for the quantitative results of these three-dimensional com-
putations.
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Some exact solutions for free convective flows over heated semi-infinite
surfaces in porous media
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1. INTRODUCTION

THE sTUDY of convection generated by a heated semi-infinite
surface embedded in a saturated porous medium has
atiracted extensive treatment in recent years. Of main con-
cern has been the practical need to determine accurately
the heat transferred into the porous medium from heated
surfaces of various orientations. After the pioneering work
of Cheng and Minkowyez [} and Cheng and Chang |2]. who
considered flows generated by vertical and upward-facing
horizontal surfaces, respectively, attention has been tocused
on higher order analyses (see refs. [3-6]). Detailed reviews
of much of this work are given in Cheng [7] and Tien and
Vafai [8]. However. the accuracy of high order analyses is
limited due to the appearance of eigensolutions at some point
in the expansion. This is due to the asymptotic nature of the
analysis and a lack of precise knowledge of the effects of the
leading edge. But we note in passing that a recent paper by
Pop er al. [9] has sought to account for the ‘leading-edge
effect” by means of a deformed streamwise coordinate.

In this note we reconsider two of the more well-researched
configurations. We consider a wedge-shaped region of satu-
rated porous medsyum bounded by two semi-infinite surfaces,
one heated isothermally, the other insulated. In particular,

+ Permanent address : School of Mechanical Engineering.
University of Bath, Claverton Down, Bath BA2 TAY, UK.

we study the two cases: (i} a vertical heated surface with a
wedge angle of m, and (i1} a horizontal upward-facing surface
with a wedge angle of 3m/2. It is shown that, for these con-
figurations, the full non-linear governing equations reduce
to a set of ordinary differential equations upon introduction
of appropriate coordinate transformations. These ODEs arc.
in faet, identical to those describing the classical leading
order boundary layer profiles, and therefore detailed descrip-
tions of the flow and temperature fields in the neighbourhood
of the leading edge are determined, as are expressions for the
heat transferred into the medium,

2. STATEMENT OF THE PROBLEM

The configuration we consider is as described above and
shown in ref. [6]. The surface y = 0. x > 0 is held at a non-
dimensional temperature of unity whilst the ambient
temperature of the saturated medium is zero (see ref. [6]
for details of the nondimensionalization). Assuming that
Darcy’s law and the Boussinesq approximation are both
valid, the two-dimensional equations become

Wi, = (cos 8, —(sin o), (la)
0 +0,, =0, —¢.0. (1b)

Since there is no natura) length scale in the problem the
Rayleigh number can be considered cither to have been



