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INTRODUCTION 

NATURAL convection flow analysis in enclosures has many 
thermal engineering applications, such as cooling of elec- 
tronic devices, energy storage systems and fire-safe com- 
partments. In the design of such devices, the transient 
behavior of flows is of vital interest in order to assess the 
maximum heat transfer rate, to cite an example. The transient 
flow properties may differ significantly from the steady-state 
values. In the present paper, a numerical study is conducted 
on three-dimensional transient natural convection in an air- 
filled cubical enclosure, which is heated differentially at its 
vertical side walls. As shown in Fig. 1, the entire system is 
initially at rest and at a uniform temperature of To. Suddenly, 
the right vertical wall of the enclosure is heated isothermally 
at a temperature of Tn, while the left side is cooled at a 
temperature of Tc. The remaining four walls are thermally 
insulated. The overall temperature difference, 7’n - Tc, is 
set equal to one-tenth of the film temperature, (Tc + Tn)/2, 
which is used as the reference temperature, T,,, of the 
problem. The geometry and the initial and boundary 
conditions are mathematically well posed; they provide 
adequate models for relevant thermal engineering systems. 

To the present authors’ knowledge, comprehensive and 
thorough time-dependent three-dimensional investigations 
are not available in the literature. Steady-state two-dimen- 
sional numerical analyses have been carried out over an 
extensive range of Rayleigh numbers of IO3 < Ra < lOi 
(e.g. ref. [l]). For IO3 < Ra < lo6 and a Boussinesq fluid of 
Pr = 0.71, a set of benchmark solutions for steady two- 
dimensional flows has been suggested [2]. Research efforts 
have been relatively scarce for transient two-dimensional 
problems [335]. The impact of internal gravity oscillations 
on the global heat transfer characteristics has been of con- 
siderable concern in such two-dimensional situations [4, 51. 

In order to better simulate practical situations, three- 
dimensional flow calculations are highly desirable. However, 
solution of the three-dimensional flow equations requires far 
larger computational resources than that for two-dimen- 
sional calculations. Steady-state three-dimensional laminar 
now has been studied for enclosures of the length aspect ratio 
(enclosure depth/width), A;, varying from 2 to 4 [6,7]. Gross 
features observed in the enclosures reveal highly three- 
dimensional structures of the flow. The enclosures with 
A, = 1 and 2 have been considered in Lankhorst and Hoog- 
endoorn [g], who computed steady flows for three Rayleigh 
numbers: Ra = lo”, 4 x 10’ and 10”‘. In the last two cases, 
the k-r: turbulence model was employed. However, these 
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FIG. 1. The flow configuration. 

previous steady-state calculations were executed by using 
relatively coarse finite difference meshes. 

In the present work, transient threedimensional com- 
putations are carried out for a Rayleigh number of 10’ 
and for Pr = 0.71. This is representative of high-Rayleigh 
number enclosure flows. An extremely fine grid network (62’ 
grid points), which has been used in a recent investigation 
by the present authors [9], is employed. This enables us to 
attain sufficient resolution of the local field characteristics. 
The numerical resolution of the present transient com- 
putations is comparable to the maximum accuracies that 
have been achieved in the previous steady-state two-dimen- 
sional situations [2]. The entire enclosure constitutes the 
computational field. The finite difference mesh is non-uni- 
formly distributed to handle steep gradients of the field vari- 
ables near the solid surfaces. 

The flow is governed by the three-dimensional, time- 
dependent, incompressible Navier-Stokes and energy equa- 
tions. They are solved by a control-volume based finite 
difference procedure. The complete mathematical for- 
mulation and a detailed description of the numerical method 
can be found elsewhere [9], and they are not repeated here. 
It suffices to mention that the convective terms are discretized 
by the QUICK methodology modified for non-uniform grids 
[IO] and that the iterative solution algorithm is based on the 
well-known SIMPLE type [l l] and the Strongly Implicit 
Scheme [12]. 

The present research is a direct extension of the previous 
three-dimensional, steady-state analysis mentioned above. 
The primary objective of this study is to present complete 
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three-dirnellsional pictures of the gross fcatureb 01 t~mc- 
cvolvingconvective patterns in a cubical enclosure. .4t a high 
Rayleigh number. it is anticipated that the distinct houndarq 
layers arc present near the walls; in the bulk of the interior. 
a near-stagnant core will bc a salient feature. The present 
paper clearly captures these prominent transient thrcc- 
dimensional characteristics by use 01‘ the state-of-the-art 
computer simulation tcchniqucs. The field characteristics of 
the transient natural convection inside the c’ncIo~u~-c arc 
cxamincd by elaborate three-dimensional numerical vicu- 
alizations of the results, as have been done an the steady- 
state calculations [9]. Time-dependent changes in the 110~ 
characteristics and heat transfer rate in the enclosure arc 
scrutinized. and the deca) of the internal gravit!t waves in 
the enclosures is dlscerniblc. 

The three-dimensional numerical results of the prcacnt 
study provide useful and systematic data for this fun- 
damental Row model ; examination of the data permits closet 
analyses of transient three-dimensional fcaturcs. In particu- 
lar. the quantitative information ofthc internal gravity oscil- 
lations \lill bc available in the present numerical solutions. 

It is stressed that the present numerical methods arc 
designed to describe the true time-dependent proccas of the 
physical phenomena. This is in contrast to the false-lime 
transient techniques [2], which 31-c used to accclcratc the 
convergence of solutions at the steady state. 

RESULTS AND DISCUSSION 

Time evolutions of the temperature and Ho\\ fields at 
Rtr = IO” arc examined by using three-dimensional per- 
spectivc views of the isotherms and the absolute values 01 
the vorticity. The vorticity. (11. deri\ahle from the velocit) 
field. is a direct indicator of the gradients of the flow. 

Initially. the fluid is at II uniform tcmpcrature of 7.,, and 
motionless. A sudden differential heating at t 3 0 at the t&o 
vertical side walls (.Y = 0 and 1) creates sharp tcmperaturc 
gradients in the proximity of the isothermal walls. In the 
central region of the enclosure. the fluid is still at the initLll 
uniform tempcraturc: thus. the heated Huid near the side 
wall at .Y- = I starts to rise. and the cooled tluid near .V 2 0 
moves downward. Subsequent to this initial devclopmcni. 
the heated and cooled fluids llow along the ceiling and floor 
of the cnclosurc. I-espectivcly. in opposite directions. After 
some time, these llows meet each other near the corners 01 
the horizontal walls. The flow licld at this stage 1s sketched 
in Fig. 2(a). which depicts the temperature and Aow lields at 
I = 7.5. Near the end walls (z = 0 and I). the isotherms 
adjacent to the her-izontal walls (r = 0 and I) develop Z- 
variations. This is due to the no-slip conditions imposed (111 

the end walls. Consequently, vorticity is generated in these 
wall regions. 

Alter ihe Iluld Iaycrs meree. ptii/r~/-~l~ 01 the tluld\ tn ~hc 
corner :II-cas between the side walls and horisontai aall< 
takes piacc as expounded by Patterson and Imberger 111 fol 
two-dimensional situations. This increases the ovcrnll tcm- 
peraturc gradients in the regions in the vicinity of the iso- 
thermal ~\alls. In the interior regions. the thermal ficld beginr 
IO stratify. as demonstrated m Fig. 2(b). The vorticity field 
illustrates that the intense 110~. motion is now mostly co,~ 
lined into the thin layers in the proximlt) of the Certicai 
isothermal walls. in col?junction with the formation of the 
stratilied structure in the interior 

As time progresses. the thermal atratification is suh- 
stantially accomplished. with the resulting near-stagnant 
interior core. As the steady state is approached (see Fig. 
7(c)). the global field is well character&d bq a combined 
structure of the boundary laqers near the walls and the ncar- 
\tagnant interior core. 

The time evolutions ofthc fields portraked abo\c arc quaI!- 
tati\cl) consistent with those described in KCblbeck (‘I tri. 
171. who considered a two-dimensiot~al ,quarc enclosure .II 
lower KC Pr values of around IO’. 

In XII effort to portray in further detail the time-depcndcnt 
Ilou process, Fig. 3 plots the cxcmpIar> behavior of the 
local Nusselt number. XII,,,,,,. at the hcatcd wall (v x I ). It\ 
definition is given ;I\ 

VII,,,, /, ~ ~~ ? I’( I. 1’. z) F 1. (1) 

It 1’1 noted that the bchakior of :Z’lr,,,,,,, IS quite inscnsitivc I<’ 
the : locations in the bulk of the enclosure. At small time\ 
(0.g. ;I[ I ~- 7.5). the I.-variations ofthc local Nusselt number, 
arc rather mild. At latct- times. large changca 01‘ VI!,,,,,,, arc 
noticed in the rcgionsclosc to the bottom wall (I’ = 0). W!XI: 
the stead) \tatc is reached. the peaks of the local Nussclt 
number- are seen slightly away from ~hr bottom plane. II i< 
ccidcnt that the dilrercnces in the Nuhrclt number profiles ~11 
z :: 0.1 and 0.5 arc very minor-: this points to the priot- 
assertion that the two-dimensionalit~ of the heat translkr 
charactcristlcs is largely applicable in thcsc central portions 
of the enclosure. 

Next. the tune c\olution of the heat tranfct. rati: I\ \crLI- 
tinized by using the overall Nusselt number. Xtr,., ,,,,,. which 
I\ calculated a’; 

where the terms in brackets represent the local Yusseit 
number. Figure 4 illustrate< the time hlstorics of .“VLC,,,~, ,,, :It 
the cnclosurc mid-plant (.I- = 0.5) and at the heated \\all 
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(c) Steady State (t > 357 

ISOTHERMS ISOVORTICITIES 
FIG. 2. Evolutions of the temperature and the absolute vorticity fields (contour levels: (for isotherms) 
0.9667 (purple), 0.9833 (blue), 1.0 (green), 1.017 (yellow), 1.033 (red) ; (for isovorticity surfaces) 3.6 

(purple), 7.2 (blue), 10.8 (green), 14.4 (yellow), 18.0 (red)). 
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FIG. 3. Time-dependent variations of the local Nusselt 
number at the heated wall (X = 1) (, ., t = 7.5 ; pppp-, 

t = 14.5 ; -, steady state). 

(X = 1). The Nusselt number at I = 1 takes very large values 
initially due to the sudden heating, and decreases rapidly to 
reach a local minimum. It increases gradually afterward, 
in a generally monotonic manner, until the steady state is 
approached. The behavior of the Nusselt number in the 
interior core, as typified in the curve for x = 0.5 in Fig. 4, 
is strikingly different from that at the solid side wall. The 
temperature in the interior core does not respond immedi- 
ately to the changes in the boundary walls. As was succinctly 
espoused in two-dimensional simulations [13-151, the tem- 
perature at an interior location remains unchanged, main- 
taining the original uniform value, To, until the arrival of 
the /rmprraturef‘ront [13-151. The temperature front in the 
interior propagates vertically during the transient phase, 
separating the region of uniform temperature and the strati- 
fied region. Figure 4 clearly illustrates the advent of this 

TIME 

FIG. 4. Evolutions of the overall Nusselt number (the time 
instants, i.e. (a), (b) and (c), correspond to those shown in 
Fig. 2 (---, at the heated wall (X = 1) ; ‘. ., in the mid- 

plane (X = 0.5)). 

temperature front, see (f) in the figure. Accordingly, no 
convective heat transfer is discernible in the curve for x = 0.5 
during the early phase of the transient process, i.e. the time 
segment from t = 0 and (f). 

Soon after the temperature front passes through the 
interior location under consideration, the convective flow 
processes become vigorous. These convective activities, 
coupled with the steep temperature gradients, give rise to 
highly enhanced heat transfer. Accordingly, the overall Nus- 
selt number demonstrates rapid increases with time around 

t = (a). 
As time elapses further, the temperature field in the interior 

tends toward the vertically-linear distribution, as can be 
inferred from Fig. 2(c). In the large-time steady-state limit, 
the interior of the entire enclosure supports an almost linear 
vertical temperature profile; the Nusselt number averaged 
over each plane of x = constant attains the same constant 
value (8.77) in the whole of the enclosure interior. 

Another significant feature of the temporal behavior of 
the Nusselt number in the interior is the pronounced oscil- 
lations superposed on the general approach to the steady 
state. The basic mechanism for this oscillatory nature was 
delineated [4]. By the way of physically insightful scaling 
arguments, Patterson and Imberger [4] stressed that these 
oscillations are reflective of the presence of internal gravity 
waves. Stemming from elaborate scaling analyses for a two- 
dimensional enclosure, Patterson and lmberger [4] and Pat- 
terson [ 161 suggested a criterion for the existence of such 
oscillations 

Ra > Pr4 A-‘. (3) 

The above criterion has been the subject of verification by 
several two-dimensional studies (e.g. refs. [5, 16, 171) that 
covered broad ranges of the Rayleigh and Prandtl numbers. 
The present calculations clearly point to the existence of such 
oscillations in the three-dimensional situations. Further- 
more, the period of oscillations is approximately 12.0, as 
detected in Fig. 4. There are no published data for the oscil- 
lation period for the threr-dimensional flows in the parameter 
ranges considered in this note ; however, the period of oscil- 
lations for /ww-dimmsional enclosure flows has been esti- 
mated [4] as 

s=27t(l+A’)“. (4) 

This two-dimensional analytical prediction for the aspect 
ratio A = 1 gives T = 8.89. These comparisons indicate that 
the detected period of oscillations in Fig. 4 is at least of the 
same order of magnitude as that of the two-dimensional 
analytical estimate. The oscillations in Fig. 4 die out with 
time after approximately three cycles ; this is due to the effects 
of viscosity, as remarked by the prior authors [4, 5. 131. 

SUMMARY 

Transient three-dimensional natural convection in a 
differentially heated cubical enclosure is studied numerically 
at a representative high-Rayleigh number of 106. By employ- 
ing a fine grid network, high-resolution computed fields have 
been secured. The present resolution is comparable to the 
best of the previous steady-state two-dimensional analyses. 
Time evolutions of the temperature and flow fields are illus- 
trated by the development of the distinct boundary layers 
along the isothermal walls and the near-stagnant interior 
core. The behavior of the heat transfer rate in the enclosure 
is seen to be considerably influenced by the presence of the 
internal gravity wave motion. The period of the oscillations 
appears to be of the same order of magnitude as the analytical 
prediction of two-dimensional flows. 

Note : the interested readers should contact the first author 
for the quantitative results of these three-dimensional com- 
putations. 
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(Krwrrw/ I3 Jww 1990 cmcl in final hvn 9 &q.m 1990) 

1. INTRODUCTION 

THE STUDY of convection generated by a heated semi-infinite 
surface embedded in a saturated porous medium has 
attracted extensive treatment in recent years. Of main con- 
cern has been the practical need to determine accurately 
the heat transferred into the porous medium from hcdtec! 
surfaces of various orientations. After the pioneering work 
of Cheng and Minkowycz [I] and C‘heng and C’hang 121. who 
consldered fows gcneratcd by vertical and upward-lacmg 
horizontal surfaces. respectively, attention has been focused 
on higher order analyses (see refs. [3 -61). Detailed reviews 
of much of this work are given in Cheng [7] and Tien and 
V&i 181. However. the accura.cy of high order anaiyscs is 
limited due to the appearance of elgensoluti[lns at some point 
in the expansion. This is due to the asymptotic nature of’ the 
analysis and a lack of precise knowledge of the effects of the 
leading edge. But we note in passmg that a recent paper by 
Pop pi ul. [9] has sought to account for the ‘leading-edge 
effect’ by means of a deformed streamwise coordinate. 

In this note we reconsider two of the more well-researched 
Con~guratioIls. We consider a wedge-shaped region of satu- 
rated porous medium bounded by two seini-infinite sui-c&cc& 
one heated isothermally. the other insulated. In particular, 
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wc study the two cases: (i) a vertical heated surface with a 
wedge angle of’n. and (ii) a horizontal upward-facing surface 
with a wedge angle of 3n/2. It is shown that, for thcsc con- 
figurations. the full non-linear governing equations reduce 
to a set ofordmary difyerentiai equations upon introduction 
of appropriate coordinate t~nsfor~lations. These ODES arc. 
in fact. identical to those describing the classical leading 
;:rder boundary layer profiles. and therefore detailed descrip- 
tions of the flow and temperature fields in the neighbourhood 
of the leading edge are determined, as are expressions for tht 
heat transferred into the medium. 

2. STATEMENT OF THE PROBLEM 

The conftgurauon we consider is as described above and 
shown in ref. [6]. The surface F = 0. .\- > 0 is held at a non- 
dimensional tempcraturc of unity whilst the ambient 
temperature of the saturated mediurn is zero (see ref. [6] 
for derails of the nondimensionalization). Assuming that 
Darcy’s law and the Boussinesq approximation are both 
valid, the two)-diln~nsional equations become 

G~,,+$,V =: (cos&)O, -. (SlIl c>)(l, (I:*, 

O,,+O,, = $,.(1,-$,Cl,. (lb) 

Since there is no natural length scale in the problem the 
Rayleigh number can be considered crther to have hecn 


